EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks.

نویسندگان

  • B Yaakobi
  • T R Boehly
  • D D Meyerhofer
  • T J B Collins
  • B A Remington
  • P G Allen
  • S M Pollaine
  • H E Lorenzana
  • J H Eggert
چکیده

Extended x-ray absorption fine structure (EXAFS) measurements have demonstrated the phase transformation from body-centered-cubic (bcc) to hexagonal-close-packed (hcp) iron due to nanosecond, laser-generated shocks. The EXAFS spectra are also used to determine the compression and temperature in the shocked iron, which are consistent with hydrodynamic simulations and with the compression inferred from velocity interferometry. This is a direct, atomic-level, and in situ proof of shock-induced transformation in iron, as opposed to the previous indirect proof based on shock-wave splitting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shock waves in polycrystalline iron.

The propagation of shock waves through polycrystalline iron is explored by large-scale atomistic simulations. For large enough shock strengths the passage of the wave causes the body-centered-cubic phase to transform into a close-packed phase with most structure being isotropic hexagonal-close-packed (hcp) and, depending on shock strength and grain orientation, some fraction of face-centered-cu...

متن کامل

In situ phase transformation and deformation of iron at high pressure and temperature

With a membrane based mechanism to allow for pressure change in a sample in a radial diffraction diamond anvil cell and simultaneous infrared laser heating, it is now possible to investigate texture changes during deformation and phase transformations over a wide range of temperature-pressure conditions. The device is used to study bcc , fcc , and hcp iron. In bcc iron, room temperature compres...

متن کامل

Importance of shear in the bcc-to-hcp transformation in iron.

Iron shows a pressure-induced martensitic phase transformation from the ground state ferromagnetic bcc phase to a nonmagnetic hcp phase at approximately 13 GPa. The exact transformation pressure (TP) and pathway are not known. Here we present a multiscale model containing a quantum-mechanics-based multiwell energy function accounting for the bcc and hcp phases of Fe and a construction of kinema...

متن کامل

Nonadiabaticity in the iron bcc to hcp phase transformation.

Iron is known to undergo a pressure-induced phase transition from the ferromagnetic (FM) body-centered-cubic (bcc) alpha-phase to the nonmagnetic (NM) hexagonal-close-packed (hcp) epsilon-phase, with a large observed pressure hysteresis whose origin is still a matter of debate. Long ago, Burgers [Physica (Amsterdam) 1, 561 (1934)] proposed an adiabatic pathway for bcc to hcp transitions involvi...

متن کامل

Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

The coexistence pressure of two phases is a well-defined point at fixed temperature. In experiment, however, due to nonhydrostatic stresses and a stress-dependent potential energy barrier, different measurements yield different ranges of pressure with a hysteresis. Accounting for these effects, we propose an inequality for comparison of the theoretical value to a plurality of measured intervals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 95 7  شماره 

صفحات  -

تاریخ انتشار 2005